Classification of the mechanomyogram signal
نویسندگان
چکیده
Previous works have resulted in some practical achievements for mechanomyogram (MMG) to control powered prostheses. This work presents the investigation of classifying the hand motion using MMG signals for multifunctional prosthetic control. MMG is thought to reflect the intrinsic mechanical activity of muscle from the lateral oscillations of fibers during contraction. However, external mechanical noise sources such as a movement artifact are known to cause considerable interference to MMG, compromising the classification accuracy. To solve this noise problem, we proposed a new scheme to extract robust MMG features by the integration of the wavelet packet transform (WPT), singular value decomposition (SVD) and a feature selection technique based on distance evaluation criteria for the classification of hand motions. The WPT was first adopted to provide an effective time– frequency representation of non-stationary MMG signals. Then, the SVD and the distance evaluation technique were utilized to extract and select the optimal feature representing the hand motion patterns from the MMG time–frequency representation matrix. Experimental results of 12 subjects showed that four different motions of the forearm and hand could be reliably differentiated using the proposed method when two channels of MMG signals were used. Compared with three previously reported time–frequency decomposition methods, i.e. short-time Fourier transform, stationary wavelet transform and S-transform, the proposed classification system gave the highest average classification accuracy up to 89.7%. The results indicated that MMG could potentially serve as an 4 Author to whom correspondence should be addressed. 0967-3334/09/050441+17$30.00 © 2009 Institute of Physics and Engineering in Medicine Printed in the UK 441
منابع مشابه
Classification of the mechanomyogram signal using a wavelet packet transform and singular value decomposition for multifunction prosthesis control.
Previous works have resulted in some practical achievements for mechanomyogram (MMG) to control powered prostheses. This work presents the investigation of classifying the hand motion using MMG signals for multifunctional prosthetic control. MMG is thought to reflect the intrinsic mechanical activity of muscle from the lateral oscillations of fibers during contraction. However, external mechani...
متن کاملA COMPARATIVE ANALYSIS OF WAVELET-BASED FEMG SIGNAL DENOISING WITH THRESHOLD FUNCTIONS AND FACIAL EXPRESSION CLASSIFICATION USING SVM AND LSSVM
This work presents a technique for the analysis of Facial Electromyogram signal activities to classify five different facial expressions for Computer-Muscle Interfacing applications. Facial Electromyogram (FEMG) is a technique for recording the asynchronous activation of neuronal inside the face muscles with non-invasive electrodes. FEMG pattern recognition is a difficult task for the researche...
متن کاملA novel method based on a combination of deep learning algorithm and fuzzy intelligent functions in order to classification of power quality disturbances in power systems
Automatic classification of power quality disturbances is the foundation to deal with power quality problem. From the traditional point of view, the identification process of power quality disturbances should be divided into three independent stages: signal analysis, feature selection and classification. However, there are some inherent defects in signal analysis and the procedure of manual fe...
متن کاملA Comparative Study of Gender and Age Classification in Speech Signals
Accurate gender classification is useful in speech and speaker recognition as well as speech emotion classification, because a better performance has been reported when separate acoustic models are employed for males and females. Gender classification is also apparent in face recognition, video summarization, human-robot interaction, etc. Although gender classification is rather mature in a...
متن کاملMMG as a Communication Channel for the Disabled
This paper describes about an improved system to provide an effective communication tool for the people who are disabled. The Mechanomyogram (MMG) signal is used as a control signal for this system. Mechanomyogram signal is the superficial measurement of the low frequency vibrations that are emitted by muscles when they contract. The mentioned system acquires MMG signal from biceps brachii musc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009